Matthieu Komorowski

How is Artificial Intelligence Changing Science?

Research in the Era of Learning Algorithms

Image by Sentavio –

Dr. Matthieu Komorowski

Cooperation Partner

Department of Surgery & Cancer
Faculty of Medicine
Imperial College London

5L15, 5th Floor, Lab Block
Charing Cross Campus
London W6 8RP
United Kingdom



  • 2019: PhD on machine learning in medicine, Imperial College London, UK
  • 2015: MRes with Distinction on Bioengineering, Imperial College London, UK
  • 2013: MD, Anesthesiologist, Université de Lille 2, France

Research Experience

  • Since 2015: PhD & Clinical Research Fellow, Section of Anaesthetics, Pain Medicine, and Intensive Care (APMIC), Imperial College London, UK
  • 2011-2012: Medical Research Fellow, European Astronaut Center (EAC), European Space Agency, Cologne, Germany

Relevant Publications

  • Gottesman, O., Johansson, F., Komorowski, M., Faisal, A., Sontag, D., Doshi-Velez, F., & Celi, L. A. (2019). Guidelines for reinforcement learning in healthcare. Nature Medicine, 25(1), 16–18.
  • Komorowski, M. (2020). Clinical management of sepsis can be improved by artificial intelligence: Yes. Intensive Care Medicine, 46(2), 375–377.
  • Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018). The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24(11), 1716–1720.
  • Kusters, R., Misevic, D., Berry, H., Cully, A., Le Cunff, Y., Dandoy, L., Díaz-Rodríguez, N., Ficher, M., Grizou, J., Othmani, A., Palpanas, T., Komorowski, M., Loiseau, P., Moulin Frier, C., Nanini, S., Quercia, D., Sebag, M., Soulié Fogelman, F., Taleb, S., … Wehbi, F. (2020). Interdisciplinary Research in Artificial Intelligence: Challenges and Opportunities. Frontiers in Big Data, 3, 45.
  • Nagendran, M., Chen, Y., Lovejoy, C. A., Gordon, A. C., Komorowski, M., Harvey, H., Topol, E. J., Ioannidis, J. P. A., Collins, G. S., & Maruthappu, M. (2020). Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 368, m689.